

Outflow speed structure of the low corona revealed by spacecraft radio scintillation observations in strong scattering

Takeshi Imamura¹, Munetoshi Tokumaru², Hiroki Ando¹, Hiroaki Isobe³, Ayumi Asai³, Daikou Shiota⁵, Kentaro Yaji⁶, Mayu Miyamoto⁴, Tomoaki Toda¹, Alexander Nabatov⁷

 Aerospace Exploration Agency, Japan. 2. Solar-Terrestrial Environment Laboratory, Nagoya University. 3. Kyoto University, Japan.
The University of Tokyo, Japan, 5. RIKEN, Japan. 6. Rikkyo University, Japan. 7. Ukrainian Academy of Science, Ukraine.

Flow speed measurements by radio scintillation method

Measurements are scarce in the low corona (below ~5 Rs) where strong scattering prevents reliable measurements.

Scintillation spectrum

Weak scattering

Strong scattering

Flow measurements by tracking moving coronal features

Measurements in streamer belts (Sheeley et al., 1997)

Running difference images obtained with coronagraphs of OHO

O⁵⁺ velocity retrieval from Doppler dimming effect

Angular position of Akatsuki relative to Sun as seen from Earth in June-July, 2011

Observations

- 17 experiments at heliocentric distances of 1.5-20 Rs
- X-band, open-loop recording (500 kHz sampling)
- Recording length is 6-7 hours in each measurement
- Simultaneous observations with a space solar telescope HINODE were conducted on June 24, 25, 26, 27

Potential magnetic field seen from the Earth on June 25, 2011 calculated from a synoptic magnetic field map provided by Global Oscillation Network Group

Synoptic velocity map generated with IPS measurements by STEL

- Mostly quiet-Sun, slow-wind regions were observed.
- Observations near the North pole may be influenced by coronal holes.

Amplitude spectra before subtracting background noise (West)

Theoretical spectrum using the formula by Rino (1979)

Characteristic wavenumber from scintillation model : k_{char} Characteristic frequency from observation : f_{char} \rightarrow Solar wind velocity $V_{sw} = 2\pi f_{char}/k_{char}$ Characteristic wavenumbers k_{char} for different density perturbation parameters C_{p} and power-law exponents

- k_{char} is roughly constant for each of the weak scattering regime and the strong scattering regime.
- The variability of k_{char} is included in the error estimation.

Derived solar wind speeds

Derived solar wind speeds

Supply of plasma to the solar wind in closed-field regions

Noci et al. (1997)

Summary

- Bulk outflow speeds of the low corona were obtained by spacecraft radio scintillation observations including the strong scattering regime.
- The speed profile shows slow motions (< 100 km s⁻¹) at 1.5-6 R_S, rapid acceleration at 7-13 R_S, and weaker acceleration at > 15 R_S to reach ~400 km s⁻¹ at 20.5 R_S. Such a speed profile is typical of the low corona in the quiet Sun region: closed fields near the Sun suppress radial acceleration, while rapid acceleration occurs at high altitudes in open field lines.
- Localized fast flows were also observed at 1.5 R_s and 1.7 R_s near the North pole probably due to the influence of open fields originated from coronal holes.
- The ubiquitous outflow of several tens of km s⁻¹ in the quiet-Sun low corona region suggests that the supply of plasma to the slow solar wind occurs continuously over an extended area.

Phase scintillation spectra

Scintillation index

Constant acceleration model

Sheeley et al., 1997

FIG. 8.—Tracking measurements for the central core of the 1996 November 5 CME of Fig. 7, showing some nonradial motion initially and a parabolic speed profile similar to those of Figs. 3–6.

Parker's solar wind model

$$\begin{split} \rho v \ \frac{\partial v}{\partial r} &= -\frac{\partial p}{\partial r} - \frac{GM\rho}{r^2} & \text{Momentum eq.} \\ \rho v r^2 &= \text{const} & \text{Mass conservation} \\ p &= 2nkT & n = \rho/m_p & \text{Eq. of state} \\ v_s^2 &= \frac{\partial p}{\partial \rho} = 2kT/m_p & v_s : \text{sound speed} \end{split}$$

Combining these, we have (Sheeley et al., 1997)

$$\frac{\partial}{\partial r} \left(\frac{v_s^2}{vr^2} \right) = -\left(\frac{1}{vr^2} \right) \left(v \frac{\partial v}{\partial r} + \frac{GM}{r^2} \right)$$
$$\frac{v_s^2(r)}{v(r)r^2} - \frac{v_s^2(r_{\max})}{v(r_{\max})r_{\max}^2} = \int_r^{r_{\max}} \left(\frac{1}{vr^2} \right) \left(v \frac{\partial v}{\partial r} + \frac{GM}{r^2} \right) dr$$

 Fitting to 'West' data taken at > 6 Rs

U > 1 ($r_F > s_d$) Strong scattering U < 1 ($r_F < s_d$) Weak scattering

⁽Rickett, 1990)

6/6 (20.7 Rs)

6/26 (1.7 Rs)