IPS Workshop 2013 in Nagoya November 24

Interplanetary Propagation of Coronal Mass Ejections
 ~Statistical and Case Studies by IPS~

OTomoya Iju (1), Munetoshi Tokumaru (1), Ken'ichi Fujiki (1), Daikou Shiota(2)
(1) Solar Wind Group, Solar-Terrestrial Environment Laboratory, Nagoya University, Japan.
(2) Integrated Studies Division, Solar-Terrestrial Environment Laboratory, Nagoya University, Japan.

Introduction

Near-Sun

Near-Earth

Space-borne Coronagraph SOHO/LASCO C3 (ESA\&NASA)

- A large amount of plasma is expelled from the Sun into the interplanetary space $=$ Coronal mass ejection (CME).
- Understanding the propagation of CMEs is very important for the space weather forecast.
- Need more CME observations between 0.2 and 1 AU.

Our Radio Telescopes for IPS Observations

\uparrow Kiso IPS Telescope [frequency: $327 \pm 5 \mathrm{MHz}$, aperture: $\approx 2000 \mathrm{~m}^{2}$]

\uparrow Solar Wind Imaging Facility (SWIFT) [same frequency, aperture: $\approx 4000 \mathrm{~m}^{2}$]

- The g-value is obtained using Kiso IPS Telescope (1997 - 2009) and SWIFT (2010~).

CMEs in the Interplanetary Space

- A sky-map of enhanced g-values (b) provides information on the spatial distribution of CMEs between 0.2 and 1 AU .
- Using SOHO/LASCO, IPS, and in-situ observations, CMEs are identified in the near-Sun region, interplanetary space, and near-Earth region, respectively.

I. Statistical Study

General Properties of CME propagation

Speed Profiles for 46 CMEs identified by

 SOHO/LASCO, IPS, and In-situ Observations During 1997 - 2011

Fast CMEs $\left[\left(V-V_{b g}\right)>500 \mathrm{~km} \mathrm{~s}^{-1}\right]$

Kinematics of Fast and Moderate CMEs

- A linear equation (dash-dotted line) is more appropriate than a quadratic one (broken line) to describe the motion of fast and moderate CMEs.

$$
\begin{gathered}
a=-\gamma_{1}\left(V-V_{b g}\right) \\
\gamma_{1}=6.51(\pm 0.23) \times 10^{-6} s^{-1}
\end{gathered}
$$

$$
\begin{gathered}
a=-\gamma_{2}\left(V-V_{b g}\right)\left|V-V_{b g}\right| \\
\gamma_{2}=6.06(\pm 0.23) \times 10^{-12} \mathrm{~m}^{-1}
\end{gathered}
$$

Kinematics of Slow CMEs

- There is no significant difference between a linear equation (dashdotted line) and a quadratic one (broken line) for describing the motion of slow CMEs.

$$
\begin{gathered}
a=-\gamma_{1}\left(V-V_{b g}\right) \\
\gamma_{1}=5.58(\pm 1.77) \times 10^{-6} s^{-1}
\end{gathered}
$$

$$
\begin{gathered}
a=-\gamma_{2}\left(V-V_{b g}\right)\left|V-V_{b g}\right| \\
\gamma_{2}=2.36(\pm 1.03) \times 10^{-12} m^{-1}
\end{gathered}
$$

II. Case Study

2-1. Influence of Magnetic field on the Interplanetary Propagation of CMEs

2-2. Evaluation of CME Speed Estimation

2-1. 3-D MHD Simulation for the CME Propagation

- Simulation of CMEs with a magnetic tours [Shiota and Kataoka, JpGU meeting, PEMo5-38, 2013]
- Distance : $25 \mathrm{R}_{\mathrm{s}} \leqq R \leqq 425 \mathrm{R}_{\mathrm{s}}\left(1 \mathrm{AU}=215 \mathrm{R}_{\mathrm{s}}\right)$
- Consider a drag force by the interaction with the solar wind and a driving force by the internal magnetic field.

[Shiota and Kataoka, JpGU meeting, 2013]
- In this pdf, simulation results are omitted because we will write a paper for them.

2-2. Comparison between g-map and V-

 map: the 28 May 2003 CME

(single-station measurement) (multi-station correlation)

- We choose radio sources measured both an enhanced g-value and velocity, and then estimate the CME speed using them.

2-2. Comparison between two methods of CME Speed Estimation: the 28 May 2003 CME

- CME speeds calculated using data of distance and time are somewhat larger than those derived from multi-station correlation.

Summary and Conclusions

I. Statistical Study

- We identified 46 CMEs using SOHO/LASCO, IPS, and in-situ observations during 1997 - 2011.
- For fast and moderate CMEs, a linear equation $a=-\gamma_{1}\left(V-V_{b g}\right)$ with $\gamma_{1}=6.51(\pm 0.23) \times 10^{-6} \mathrm{~s}^{-1}$ is more appropriate than a quadratic one to describe their interplanetary propagation.
- For slow CMEs, we need to identify more events and then examine their propagation carefully.
II. Case Study
- We found from the comparison with a MHD simulation that the best-fit parameters (the angular width and strength of internal magnetic field) are different for each CME.
- CME speeds calculated using data of distance and time are somewhat larger than those derived from multi-station correlation for the 28 May 2003 event.

Calculation of CME radial speeds

- Reference distances $R_{1,2}$ and speeds $V_{1,2}$

$$
\begin{aligned}
& V_{1}=\frac{1}{n} \sum_{i=1}^{n} \frac{d_{\mathrm{IPS}, i}-d_{\mathrm{SOHO}}}{t_{\mathrm{IPS}, i}-t_{\mathrm{SOHO}}} \\
& V_{2}=\frac{1}{n} \sum_{i=1}^{n} \frac{d_{\mathrm{ACE}}-d_{\mathrm{IPS}, i}}{t_{\mathrm{ACE}}-t_{\mathrm{IPS}, i}}
\end{aligned}
$$

SOHO-IPS: $\quad R_{1}=\frac{1}{n} \sum_{i=1}^{n} \frac{d_{\text {Sоно }}+d_{\mathrm{IPS}, i}}{2}$

$$
\text { IPS-ACE: } R_{2}=\frac{1}{n} \sum_{i=1}^{n} \frac{d_{\mathrm{IPS}, i}+d_{\mathrm{ACE}}}{2}
$$

 of LASCO C2 F.O.V, P-point distance $d_{\text {IPS }}$ and observation time $t_{\text {IPS }}$ for a $g \geqq 1.5$ radio source, $t_{\text {ACE }}$ is ICME detection time at ACE, and $d_{\mathrm{ACE}} \sim 1 \mathrm{AU}$

Calculation of CME accelerations

From speeds $v_{1,2}$ at reference distances $r_{1,2}$, CME appearance time $t_{\text {SOHO }}$, mean near-Sun CME speed $V_{\text {SOHO }}$, observation time $t_{\text {IPS }}$ for a $g \geqq 1.5$ radio source, ICME detection time t_{ACE}, and mean near-Earth ICME speed $V_{\text {ACE }}$

SOHO-IPS: $a_{1}=\frac{1}{n} \sum_{i=1}^{n} \frac{v_{\mathrm{IPS}, i}-V_{\text {SOно }}}{t_{\mathrm{IPS}, i}-t_{\mathrm{SOHO}}}$ Here $\quad v_{\mathrm{IPS}, i}=\frac{v_{1, i}+v_{2, i}}{2}$

$$
\text { IPS-ACE: } \quad a_{1}=\frac{1}{n} \sum_{i=1}^{n} \frac{V_{\mathrm{ACE}}-v_{\mathrm{IPS}, i}}{t_{\mathrm{ACE}}-t_{\mathrm{IPS}, i}}
$$

